π -CYCLOPENTADIENYLS OF NICKEL(II)

VI. ALIPHATIC DITHIOL DIANION BRIDGED DINUCLEAR ORGANO-NICKEL COMPOUNDS

FUMIE SATO, TADAO YOSHIDA and MASAO SATO

Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo (Japan) (Received November 2nd, 1971)

SUMMARY

 π -Cyclopentadienylbis(tri-n-butylphosphine)nickel chloride reacts with aliphatic dithiol dianions $[S-(CH_2)_n-S]^{2-}$ (n=2, 4 and 6) to give the dithiol dianion bridged dinuclear organonickel compounds, π -C₅H₅(PBu₃)Ni-S(CH₂)_nS-Ni(PBu₃)- π -C₅H₅.

INTRODUCTION

It has been shown previously that $[\pi - C_5H_5Ni(PBu_3)_2]^+Cl^-$ reacts with NaSR $(R = Ph \text{ or } CH_2Ph)$ in the aqueous solution to give $\pi - C_5H_5Ni(PBu_3)SR$ in good yield¹.

 $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ + NaSR \rightarrow π -C₅H₅Ni(PBu₃)SR

The present study which deals with the reaction of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ with disodium aliphatic dithiolates, was undertaken with the aim of preparing dithiol dianion bridged organonickel compounds (I), and investigating their properties.

RESULTS AND DISCUSSION

When an ethanol solution of NaS(CH₂)₂SNa is added to an aqueous solution of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ a reddish brown precipitate of the complex π -C₅H₅-(PBu₃)NiS(CH₂)₂SNi(PBu₃)- π -C₅H₅ (II) is produced. The IR spectrum of (II) resembles that of π -C₅H₅Ni(PBu₃)SR* (R=alkyl), and shows the characteristic out-ofplane deformation band of the π -cyclopentadienyl at 795 cm⁻¹. The proton NMR spectrum in C₆D₆ shows bands at τ 8.10–9.30 (intensity 54) due to the PBu₃ protons,

* Unpublished work.

J. Organometal. Chem., 37 (1972)

a sharp singlet at τ 4.75 (intensity 10) due to π -C₅H₅ protons, and a singlet at τ 7.50 (intensity 4) due to the -S-(CH₂)₂-S- protons.

The green complexes, π -C₅H₅(PBu₃)NiS(CH₂)₄SNi(PBu₃)- π -C₅H₅ (III) and π -C₅H₅(PBu₃)NiS(CH₂)₆SNi(PBu₃)- π -C₅H₅ (IV), were obtained analogously from the reactions of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ with NaS(CH₂)₄SNa and NaS(CH₂)₆SNa respectively. The IR spectra of (III) and (IV) resemble each other; the characteristic out-of-plane deformation band of π -cyclopentadienyl appears at 790 cm⁻¹ for the former and at 785 cm⁻¹ for the latter. The proton NMR spectra of (III) and (IV) (Table 1) are consistent with the formulas; thus, the NMR spectrum of complex (III) in C₆D₆ shows a triplet at τ 7.80 due to the SCH₂ protons and a multiplet at τ 8.05 due to the S-C-CH₂ protons of the butane dithiol dianion, in addition to bands due to the π -C₅H₅ and PBu₃ protons, while complex (IV) shows a triplet at τ 7.85 due to the SCH₂ protons of the hexanedithiol dianion, though the other methylene protons are overlapped by the peaks of the PBu₃ protons.

TABLE 1

PROTON NMR DATA AND APPARENT MOLECULAR WEIGHTS FOR COMPLEXES (II), (III) AND (IV)

Compound (II)	Proton NMR data ^a				Mol.wt.,
	$\tau(\pi - C_{2} II_{3})$ 4.75 (s) ^b	τ(<i>PBu</i> ₃) 8.10–9.30	Dithiol anion		(calcd.)
			7.50 (s)		430
(111)	4.77 (s)	8.20–9.30	7.80 (t)	S-CH ₂	590
(IV)	4.77 (s)	0.0	8.05 (m) 7.85 (t)	S-C-CH ₂ S-CH ₂	778

" In C_6D_6 solution, TMS as internal standard.

^b s, singlet; t, triplet; m, multiplet.

 $\tau (PBu)_3 + \tau (-S-C-(CH_2)_4-C-S-).$

The apparent molecular weights, determined by cryoscopy in benzene, of the complexes (II), (III) and (IV) (Table 1) are lower than the calculated values. Moreover, the benzene or hexane solutions of (II), (III) and (IV) are greenish brown, though solid (II) is reddish brown and solids (III) and (IV) are green. From these results, it was concluded that the complexes (II), (III), and (IV) dissociate in benzene or n-hexane. Since many thiolato metal compounds exist as dinuclear or polynuclear compounds, it seems reasonable that in these complexes it is the PBu₃ which dissociates.

EXPERIMENTAL

 $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ was prepared as previously described². The ethanol solution of disodium aliphatic dithiolate was prepared from Na and the aliphatic dithiol in ethanol³. Benzene, n-hexane, n-pentane, ethanol and water were purified in the usual ways and degassed before use. IR spectra were recorded on a JASCO IR-G spectrometer. Proton NMR spectra were recorded on a JEOL-JNM-4H-100-

NMR spectrometer with TMS as internal standard. All experiments were conducted under dry nitrogen.

The reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with $NaS(CH_2)_2SNa$

NaS(CH₂)₂SNa (2 mmoles) in 30 ml of ethanol was added to a solution of 1 mmole of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ in 50 ml of water at about 10°. A reddish brown precipitate appeared immediately. This was extracted with 50 ml of benzene, and the benzene solution was dried over anhydrous calcium chloride. The solution was evaporated *in vacuo* and the residue was recrystallized from n-pentane to give (II) as reddish brown crystals, m.p. 70.0–71.0° (dec.), in 95% yield. (Found : C, 57.78; H, 9.69; S, 7.96. C₃₆H₆₈Ni₂P₂S₂ calcd.: C, 58.11; H, 9.15; S, 8.65%.)

The reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with $NaS(CH_2)_4 SNa$

A similar procedure with 1 mmole of NaS(CH_2)₄SNa and 1 mmole of $[\pi$ -C₅H₅Ni(PBu₃)₂]⁺Cl⁻ gave (III) as green crystals, m.p. 101–102°, in 70% yield. (Found: C, 58.20; H, 9.47; S, 8.38. C₃₈H₇₂Ni₂P₂S₂ calcd.: C, 59.11; H, 9.33; S, 8.30%.)

The reaction of $[\pi - C_5 H_5 Ni(PBu_3)_2]^+ Cl^-$ with $NaS(CH_2)_6 SNa$

Similarly from the reaction with NaS(CH₂)₆SNa, (IV) was obtained as green crystals, m.p. 85.0–87.0°, in 75% yield. (Found : C, 59.25; H, 9.60; S, 8.32. $C_{40}H_{76}Ni_2$ -P₂S₂ calcd.: C, 60.04; H, 9.51; S, 8.01%.)

REFERENCES

- 1 M. Sato, F. Sato, N. Takemoto and K. Iida, J. Organometal. Chem., 34 (1972) 205.
- 2 M. Sato, F. Sato and T. Yoshida, J. Organometal. Chem., 26 (1971) C49.
- 3 Org. Syn., Wiley-Interscience, New York, Vol. 39, 1959, p23.

J. Organometal. Chem., 37 (1972)